Moyenne mobile Cet exemple vous enseigne comment calculer la moyenne mobile d'une série temporelle dans Excel. Une moyenne mobile est utilisée pour lisser les irrégularités (pics et vallées) pour reconnaître facilement les tendances. 1. Tout d'abord, jetez un oeil à notre série chronologique. 2. Sous l'onglet Données, cliquez sur Analyse des données. Remarque: ne trouve pas le bouton Analyse des données Cliquez ici pour charger le complément Analysis ToolPak. 3. Sélectionnez Moyenne mobile et cliquez sur OK. 4. Cliquez dans la zone Plage d'entrée et sélectionnez la plage B2: M2. 5. Cliquez dans la zone Intervalle et tapez 6. 6. Cliquez dans la zone Plage de sortie et sélectionnez la cellule B3. 8. Tracez un graphique de ces valeurs. Explication: parce que nous définissons l'intervalle sur 6, la moyenne mobile est la moyenne des 5 points de données précédents et le point de données actuel. En conséquence, les crêtes et les vallées sont lissées. Le graphique montre une tendance à la hausse. Excel ne peut pas calculer la moyenne mobile pour les 5 premiers points de données car il n'y a pas assez de points de données antérieurs. 9. Répétez les étapes 2 à 8 pour l'intervalle 2 et l'intervalle 4. Conclusion: Plus l'intervalle est grand, plus les sommets et les vallées sont lissés. Plus l'intervalle est faible, plus les moyennes mobiles sont proches des points de données réels. Comme vous pouvez le deviner, nous examinons certaines des approches les plus primitives en matière de prévision. Mais nous espérons que ce sont au moins une introduction utile à certains des problèmes informatiques liés à la mise en œuvre des prévisions dans les tableurs. Dans cette veine, nous allons continuer en commençant par le début et commencer à travailler avec les prévisions Moyenne mobile. Prévisions moyennes mobiles. Tout le monde est familier avec les prévisions de moyenne mobile, peu importe s'ils croient qu'ils sont. Tous les étudiants les font tout le temps. Pensez à vos résultats d'examen dans un cours où vous allez avoir quatre tests au cours du semestre. Supposons que vous avez obtenu un 85 sur votre premier test. Que penseriez-vous que votre professeur pourrait prédire pour votre score de test suivant Que pensez-vous que vos amis pourraient prédire pour votre score de test suivant Que pensez-vous que vos parents pourraient prédire pour votre score de test suivant Indépendamment de Tous les blabbing que vous pourriez faire à vos amis et parents, ils et votre professeur sont très susceptibles de vous attendre à obtenir quelque chose dans le domaine des 85 que vous venez de recevoir. Eh bien, maintenant, supposons qu'en dépit de votre auto-promotion à vos amis, vous surestimer vous-même et la figure que vous pouvez étudier moins pour le deuxième test et ainsi vous obtenez un 73. Maintenant, qu'est-ce que tous les intéressés et indifférents va Anticiper que vous obtiendrez sur votre troisième test Il ya deux approches très probables pour eux de développer une estimation indépendamment du fait qu'ils le partageront avec vous. Ils peuvent se dire, ce type est toujours souffler de la fumée sur son smarts. Hes va obtenir un autre 73 si hes chance. Peut-être que les parents vont essayer d'être plus solidaires et dire: «Bien, jusqu'à présent, vous avez obtenu un 85 et un 73, donc vous devriez peut-être figure sur obtenir un (85 73) 2 79. Je ne sais pas, peut-être si vous avez moins de fête Et werent remuant la belette tout autour de la place et si vous avez commencé à faire beaucoup plus étudier vous pourriez obtenir un meilleur score. quot Ces deux estimations sont en fait des prévisions moyennes mobiles. Le premier est d'utiliser uniquement votre score le plus récent pour prévoir vos performances futures. C'est ce que l'on appelle une moyenne mobile en utilisant une période de données. La seconde est également une prévision moyenne mobile, mais en utilisant deux périodes de données. Supposons que toutes ces personnes se brisant sur votre grand esprit ont sorte de pissé vous off et vous décidez de bien faire sur le troisième test pour vos propres raisons et de mettre un score plus élevé en face de vos quotalliesquot. Vous prenez le test et votre score est en fait un 89 Tout le monde, y compris vous-même, est impressionné. Donc, maintenant, vous avez le test final du semestre à venir et, comme d'habitude, vous vous sentez le besoin d'inciter tout le monde à faire leurs prédictions sur la façon dont vous allez faire sur le dernier test. Eh bien, j'espère que vous voyez le modèle. Maintenant, j'espère que vous pouvez voir le modèle. Qui pensez-vous est le sifflet le plus précis alors que nous travaillons. Maintenant, nous revenons à notre nouvelle entreprise de nettoyage a commencé par votre demi-soeur sœur appelé Whistle While We Work. Vous avez des données de ventes passées représentées par la section suivante dans une feuille de calcul. Nous présentons d'abord les données pour une moyenne mobile de trois périodes prévisionnelles. L'entrée pour la cellule C6 doit être maintenant Vous pouvez copier cette formule de cellule vers le bas pour les autres cellules C7 à C11. Remarquez comment la moyenne se déplace sur les données historiques les plus récentes, mais utilise exactement les trois périodes les plus récentes disponibles pour chaque prédiction. Vous devriez également remarquer que nous n'avons pas vraiment besoin de faire les prédictions pour les périodes passées afin de développer notre prédiction la plus récente. Ceci est certainement différent du modèle de lissage exponentiel. Ive inclus les prévisions quotpastquot parce que nous les utiliserons dans la prochaine page Web pour mesurer la validité de prédiction. Maintenant, je veux présenter les résultats analogues pour une prévision moyenne mobile à deux périodes. L'entrée pour la cellule C5 doit être Maintenant, vous pouvez copier cette formule de cellule vers le bas pour les autres cellules C6 à C11. Remarquez que maintenant, seules les deux plus récentes données historiques sont utilisées pour chaque prédiction. Ici encore, j'ai inclus les prévisions quotpast à des fins d'illustration et pour une utilisation ultérieure dans la validation des prévisions. Quelques autres choses qui sont d'importance à remarquer. Pour une prévision moyenne mobile de la période m, seules les m valeurs de données les plus récentes sont utilisées pour faire la prédiction. Rien d'autre n'est nécessaire. Pour une prévision moyenne mobile de la période m, lorsque vous faites des prédictions quotpast, notez que la première prédiction se produit dans la période m 1. Ces deux questions seront très importantes lorsque nous développerons notre code. Développement de la fonction Moyenne mobile. Maintenant, nous devons développer le code de la moyenne mobile qui peut être utilisé avec plus de souplesse. Le code suit. Notez que les entrées sont pour le nombre de périodes que vous souhaitez utiliser dans la prévision et le tableau des valeurs historiques. Vous pouvez le stocker dans le classeur que vous voulez. Fonction DéplacementAvant (Historique, NumberOfPeriods) En tant que Déclaration unique et initialisation de variables Dim Item Comme Variant Dim Compteur Comme Entier Dim Accumulation Comme Simple Dim HistoricalSize As Integer Initialisation des variables Counter 1 Accumulation 0 Détermination de la taille de Historique HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Accumuler le nombre approprié des valeurs les plus récentes observées antérieurement Accumulation Accumulation Historique (Historique - Taille - NombreOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Le code sera expliqué en classe. Vous voulez positionner la fonction sur la feuille de calcul afin que le résultat du calcul apparaisse où il devrait aimer le suivant. En pratique, la moyenne mobile fournira une bonne estimation de la moyenne de la série chronologique si la moyenne est constante ou change lentement. Dans le cas d'une moyenne constante, la plus grande valeur de m donnera les meilleures estimations de la moyenne sous-jacente. Une période d'observation plus longue évalue en moyenne les effets de la variabilité. Le but de fournir un plus petit m est de permettre à la prévision de répondre à un changement dans le processus sous-jacent. Pour illustrer, nous proposons un ensemble de données qui intègre des changements dans la moyenne sous-jacente de la série chronologique. La figure montre la série chronologique utilisée pour l'illustration ainsi que la demande moyenne à partir de laquelle la série a été générée. La moyenne commence comme une constante à 10. En commençant au temps 21, elle augmente d'une unité dans chaque période jusqu'à ce qu'elle atteigne la valeur de 20 au temps 30. Puis elle redevient constante. Les données sont simulées en ajoutant à la moyenne un bruit aléatoire issu d'une distribution normale avec moyenne nulle et écart-type 3. Les résultats de la simulation sont arrondis à l'entier le plus proche. Le tableau montre les observations simulées utilisées pour l'exemple. Lorsque nous utilisons la table, nous devons nous rappeler qu'à un moment donné, seules les données passées sont connues. Les estimations du paramètre du modèle, pour trois valeurs différentes de m, sont indiquées avec la moyenne des séries temporelles dans la figure ci-dessous. La figure montre l'estimation moyenne mobile de la moyenne à chaque instant et non pas la prévision. Les prévisions changeraient les courbes de la moyenne mobile vers la droite par périodes. Une conclusion ressort immédiatement de la figure. Pour les trois estimations, la moyenne mobile est en retard par rapport à la tendance linéaire, le décalage augmentant avec m. Le retard est la distance entre le modèle et l'estimation dans la dimension temporelle. En raison du décalage, la moyenne mobile sous-estime les observations à mesure que la moyenne augmente. Le biais de l'estimateur est la différence à un moment précis dans la valeur moyenne du modèle et la valeur moyenne prédite par la moyenne mobile. Le biais lorsque la moyenne augmente est négatif. Pour une moyenne décroissante, le biais est positif. Le retard dans le temps et le biais introduit dans l'estimation sont des fonctions de m. Plus la valeur de m. Plus l'ampleur du décalage et du biais est grande. Pour une série en constante augmentation avec tendance a. Les valeurs de retard et de biais de l'estimateur de la moyenne sont données dans les équations ci-dessous. Les courbes d'exemple ne correspondent pas à ces équations parce que le modèle d'exemple n'est pas en augmentation continue, plutôt qu'il commence comme une constante, des changements à une tendance et devient alors à nouveau constante. Les courbes d'exemple sont également affectées par le bruit. La prévision moyenne mobile des périodes dans le futur est représentée par le déplacement des courbes vers la droite. Le décalage et le biais augmentent proportionnellement. Les équations ci-dessous indiquent le décalage et le biais d'une période de prévision dans le futur par rapport aux paramètres du modèle. Encore une fois, ces formules sont pour une série chronologique avec une tendance linéaire constante. Nous ne devrions pas être surpris de ce résultat. L'estimateur de la moyenne mobile est basé sur l'hypothèse d'une moyenne constante, et l'exemple a une tendance linéaire dans la moyenne pendant une partie de la période d'étude. Étant donné que les séries de temps réel obéiront rarement exactement aux hypothèses de n'importe quel modèle, nous devrions être préparés à de tels résultats. On peut aussi conclure de la figure que la variabilité du bruit a le plus grand effet pour m plus petit. L'estimation est beaucoup plus volatile pour la moyenne mobile de 5 que la moyenne mobile de 20. Nous avons les désirs contradictoires d'augmenter m pour réduire l'effet de la variabilité due au bruit et diminuer m pour rendre la prévision plus sensible aux changements En moyenne. L'erreur est la différence entre les données réelles et la valeur prévue. Si la série chronologique est vraiment une valeur constante, la valeur attendue de l'erreur est nulle et la variance de l'erreur est composée d'un terme qui est une fonction de et d'un second terme qui est la variance du bruit,. Le premier terme est la variance de la moyenne estimée avec un échantillon de m observations, en supposant que les données proviennent d'une population avec une moyenne constante. Ce terme est minimisé en faisant m le plus grand possible. Un grand m rend la prévision insensible à une modification de la série chronologique sous-jacente. Pour rendre la prévision sensible aux changements, nous voulons m aussi petit que possible (1), mais cela augmente la variance d'erreur. La prévision pratique nécessite une valeur intermédiaire. Prévision avec Excel Le complément de prévision implémente les formules de moyenne mobile. L'exemple ci-dessous montre l'analyse fournie par l'add-in pour les données d'échantillon de la colonne B. Les 10 premières observations sont indexées -9 à 0. Par rapport au tableau ci-dessus, les indices de période sont décalés de -10. Les dix premières observations fournissent les valeurs de démarrage pour l'estimation et sont utilisées pour calculer la moyenne mobile pour la période 0. La colonne MA (10) (C) montre les moyennes mobiles calculées. Le paramètre de la moyenne mobile m est dans la cellule C3. La colonne Fore (1) (D) montre une prévision pour une période dans le futur. L'intervalle de prévision est dans la cellule D3. Lorsque l'intervalle de prévision est changé en un nombre plus grand, les nombres de la colonne Fore sont décalés vers le bas. La colonne Err (1) (E) montre la différence entre l'observation et la prévision. Par exemple, l'observation au temps 1 est 6. La valeur prévue à partir de la moyenne mobile au temps 0 est 11.1. L'erreur est alors de -5,1. L'écart type et l'écart moyen moyen (MAD) sont calculés respectivement dans les cellules E6 et E7.
No comments:
Post a Comment